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We develop an athermal shear-transformation-zone �STZ� theory of plastic deformation in spatially inho-
mogeneous, amorphous solids. Our ultimate goal is to describe the dynamics of the boundaries of voids or
cracks in such systems when they are subjected to remote, time-dependent tractions. The theory is illustrated
here for the case of a circular hole in an infinite two-dimensional plate, a highly symmetric situation that allows
us to solve much of the problem analytically. In spite of its special symmetry, this example contains many
general features of systems in which stress is concentrated near free boundaries and deforms them irreversibly.
We depart from conventional treatments of such problems in two ways. First, the STZ analysis allows us to
keep track of spatially heterogeneous, internal state variables such as the effective disorder temperature, which
determines plastic response to subsequent loading. Second, we subject the system to stress pulses of finite
duration, and therefore are able to observe elastoplastic response during both loading and unloading. We
compute the final deformations and residual stresses produced by these stress pulses. Looking toward more
general applications of these results, we examine the possibility of constructing a boundary-layer theory that
might be useful in less symmetric situations.
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I. INTRODUCTION

The aim of this paper is to develop a theoretical descrip-
tion of the way in which the boundaries of voids in amor-
phous solids move under the influence of external loads. An
obvious example is dynamic fracture. The evolution of
cracks is traditionally described by linear elasticity. How-
ever, elasticity by itself does not provide a dynamical theory
of crack motion but, instead, uses criteria such as an energy
balance to provide bounds on the velocities of straight cracks
�1�. This approach was challenged by one of us in Ref. �2�.
More recently, starting with closely related ideas, it was
shown in Ref. �3� that taking into account the dynamic de-
grees of freedom near a moving crack tip resolves various
inconsistencies in traditional theories of linear elastic frac-
ture mechanics. Nevertheless, the theoretical approach of
Ref. �3� is far from complete; it is still not an accurate and
internally self-consistent description of free-boundary
motion.

We do not deal with the actual dynamics of cracks in this
paper. Rather, we apply the shear-transformation-zone �STZ�
theory developed in two recent papers �4,5� to the dynamics
of a circular hole in an infinite medium. We have chosen this
highly symmetric example in order to simplify the tensorial
character of the theory, and to help in developing analytic
methods that may remain applicable in less symmetric situ-
ations. As we shall see, the solutions of the circle problem
provide a wealth of information about the ways in which
stress concentrations near moving free boundaries induce
plastic deformation.

The STZ approach that we employ here is based on recent
developments in the theory of dynamic elastoplastic defor-
mation of amorphous materials at low temperatures �4�. The
theory was applied to a homogenous situation in �4� and the
results were compared to recent numerical simulations in �5�.
The STZ theory, originally proposed in Refs. �6,7�, deviates

from conventional approaches �8� by focusing on the nature
of the microscopic mechanisms for plastic deformation in
amorphous media. These mechanisms are incorporated into
the macroscopic description by internal state fields. An im-
portant observation is that the plastic strain itself cannot be
one of these fields. For that to be true, the material would
somehow have to encode information about its entire history
of deformation starting from some reference state. This is not
possible. More realistically, the memory of prior deforma-
tions, and the rate at which that memory is lost, must be
encoded in the internal state variables and their equations of
motion. The identification of the physically appropriate mi-
croscopic variables is based here on the notion that STZ’s are
sparsely distributed, localized clusters of molecules that are
especially susceptible to rearrangement in response to ap-
plied stresses. To take the STZ’s and their role in the dynam-
ics into account, one introduces a scalar field that describes
the density of STZ’s and a tensorial one that describes their
orientation. Equations of motion for both the plastic strain
rate and these internal state fields are obtained by assuming
that STZ’s change orientation �deform by finite amounts� at
rates that depend on the stress. In addition, STZ’s are created
and annihilated at rates proportional to the rate at which the
energy of plastic deformation is dissipated �7�.

An earlier STZ analysis of the circle problem �9� was
based on a “quasilinear” version of the theory that used a
conveniently truncated form of the transition rates �6,7�. This
relatively simple theory captured linear viscoelasticity at
small stresses, finite viscoplasticity at intermediate stresses,
and unbounded plastic deformation at large stresses as a re-
sult of an exchange of dynamic stability between jammed
�nondeforming� and unjammed �deforming� states of the sys-
tem. Some memory effects were also described successfully.
The quasilinear theory, however, had serious limitations; and
therefore we base the present analysis on the recent version
of STZ theory �4� that starts with more physically realistic
assumptions. In Ref. �4�, it was argued that the defining fea-
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ture of a system at low temperatures is the constraint that,
because thermal activation of STZ transitions is negligible or
nonexistent, each molecular rearrangement occurs in re-
sponse to an external driving force. No motion occurs in the
absence of such a force, and no rearrangement moves in
opposition to the direction of that force. In addition, this
version of STZ theory includes the possibility that STZ’s
occur in many different types and with a range of different
transition thresholds.

The problem of dynamic hole growth in plastically de-
forming solids has a long history. For example, see early
work by McClintock �10�, Rice and Tracey �11�, Carroll and
Holt �12�, Johnson �13�, and Bodner and Partom �14�. Our
present analysis goes beyond this earlier work, and beyond
the results presented in Ref. �9� in many respects; specifi-
cally, the following.

�1� We employ here the fully nonlinear, athermal theory
described in Ref. �4�, and therefore automatically include
hardening and rate-dependent effects that were missing in all
the early work cited above.

�2� The material time derivatives are expressed in a proper
Eulerian formulation and the theory is consistent with all
relevant conservation laws and symmetries.

�3� The calculation described here takes into account the
dynamics of the density of STZ’s via an effective-
temperature formulation, a feature that is shown in Refs.
�4,5� to be essential for self-consistency in these theories.

�4� The focus here is on the transient growth regime that
is relevant to dynamic situations such as fracture. Instead of
considering only constant loads, we look at the elastoplastic
response to a stress pulse, and study the behavior during both
loading and subsequent unloading.

�5� We develop a boundary layer theory that provides a
useful approximation for the exact numerical solution.

The organization of this paper is as follows. In Sec. II we
write the equations of motion and the boundary conditions
for a circular hole in an infinite sheet of material subjected to
a uniform radial stress at infinity. In Sec. III, we review the
elements of the STZ theory that are needed for this problem
and specialize to cases of interest here. Section IV contains
discussions of the specific situations to be considered in
more detail, starting with the two different loading schemes
to be used, and then the simplifying assumption of elastic
incompressibility. Our numerical results for both constant ap-
plied stress and two different stress pulses are presented in
Sec. V. Section VI is devoted to the development of a bound-
ary layer approximation and its comparison with the numeri-
cal results. Finally, in Sec. VII, we offer a summary and
further discussion. In the Appendix, we show how to com-
pute the threshold for unbounded growth of the circular hole
under constant remote loading.

II. EQUATIONS AND BOUNDARY CONDITIONS

A. Strain, stress, and rate of deformation

We start by writing the full set of equations for a general
two-dimensional elastoplastic material. We define the total
rate-of-deformation tensor

Dij
tot �

1

2
� �vi

�xj
+

�v j

�xi
� , �2.1�

where v�r , t� is the material velocity at the location r at time
t. This type of Eulerian formulation has the advantage that it
disposes of any reference state, allowing free discussion of
small or large deformations. The price that we pay is that, in
inhomogeneous situations, we need to employ the full mate-
rial derivative for a tensor A,

DA

Dt
=

�A

�t
+ v · �A + A · � − � · A , �2.2�

where � is the spin tensor

�ij �
1

2
� �vi

�xj
−

�v j

�xi
� . �2.3�

For a scalar or vector quantity A the commutator with the
spin tensor vanishes identically.

Plasticity is introduced by assuming that the total rate-of-
deformation tensor can be written as a sum of elastic and
plastic contributions

Dij
tot =

D�ij
el

Dt
+ Dij

pl. �2.4�

On the face of it this looks similar to an innocent definition
of Dij

pl. We want, however, Dij
pl to contain all the dissipative

contributions to the dynamics. Such a linear superposition
with this meaning in mind is only possible when the elastic
deformations are small, see Ref. �15�. Once we assume small
elastic deformations we can also use linear elasticity. The
linear elastic strain tensor �ij

el is related to the stress tensor
whose general form is

�ij = − p�ij + sij, p = −
1

2
�kk. �2.5�

The relation is

�ij
el = −

p

2K
�ij +

sij

2�
, �2.6�

where K and � are the two-dimensional bulk and shear
moduli respectively. sij is the deviatoric stress tensor and p is
the pressure. The equations of acceleration and continuity are

�
Dv

Dt
= � · � = − �p + � · s , �2.7�

D�

Dt
= − � � · v . �2.8�

Consider now an infinite two-dimensional amorphous ma-
terial with a circular hole centered at the origin. The hole has
radius R; and the system is loaded at infinity by a radial,
uniform and possibly time-dependent stress ���t�. For this
configuration, the field of interest is the radial velocity
vr�r , t�, denoted here simply by v�r , t�. The nonvanishing
components of Dij

tot in Eq. �2.1� are
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Drr
tot =

�v
�r

, D		
tot =

v
r

. �2.9�

Note that Dij
tot satisfies the compatibility relation

Drr
tot =

�

�r
�rD		

tot� . �2.10�

The azimuthal velocity vanishes identically. Since the spin
tensor vanishes identically in the circular symmetry, the ma-
terial time derivative in Eq. �2.2� becomes

D
Dt

�
�

�t
+ v

�

�r
. �2.11�

We now turn to the equations of motion �2.7�. The sym-
metry of the problem implies that only the �rr and �		 com-
ponents of the stress tensor are nonvanishing. The tensor sij
is diagonal, and thus we define the deviatoric stress s and the
pressure p to be

p � −
1

2
��		 + �rr�, s � s		 = − srr =

1

2
��		 − �rr� .

�2.12�

Next we assume that the inertial term on the left-hand side of
Eq. �2.7� is negligible and that density variations are also
negligible; thus Eq. �2.8� is satisfied automatically, and Eqs.
�2.7� reduce to a single force balance equation of the form
�16�

��rr

�r
+

�rr − �		

r
= 0, �2.13�

which, with Eqs. �2.12�, becomes

�p

�r
= −

1

r2

�

�r
�r2s� . �2.14�

The hole edge is a free boundary, i.e., it is traction-free, and
therefore the boundary conditions are

�rr�R,t� = − p�R,t� − s�R,t� = 0,

p → − ���t�, s → 0 as r → � , �2.15�

where ���t� is assumed to vary slowly enough that the omis-
sion of the inertial terms in Eq. �2.7� is still justified.

B. Introducing plasticity

Plasticity is introduced as in Eq. �2.4�. According to Eq.
�2.6�, the components �ij

el of the strain tensor satisfy

�rr
el = −

p

2K
−

s

2�
,

�		
el = −

p

2K
+

s

2�
. �2.16�

The two-dimensional bulk modulus K is given by

K =
��1 + 
*�

1 − 
* , �2.17�

where 
* is the two-dimensional Poisson ratio. Unlike
dislocation-caused plasticity in metals, plasticity in amor-
phous media may not be volume conserving. Nevertheless,
for simplicity we take here the plastic rate-of-deformation
tensor Dij

pl to be traceless, implying that in our case plasticity
is volume conserving, and that we need to consider only
shear deformations. Hence in circular symmetry we have

D		
pl = − Drr

pl � Dpl. �2.18�

The constitutive behavior is introduced by writing Dpl as a
function of the deviatoric stress s and the internal state fields.
The material velocity at the edge of the hole v�R , t� is just
the rate of change of the hole radius

Ṙ�t� = v�R,t� �2.19�

and therefore, using the second equation in Eq. �2.9�, we see
that the hole evolves according to

Ṙ

R
= D		

tot�R,t� . �2.20�

Once D		
tot�R , t� is specified, the last relation becomes an

equation of motion for the boundary of the hole.

C. The velocity field

In order to explore the analytic structure of the problem,
we use Eqs. �2.4�, �2.9�, �2.16�, and �2.18� to obtain

v
r

+
�v
�r

= −
1

K

Dp

Dt
= −

1

K
�ṗ + v

�p

�r
	 , �2.21�

v
r

−
�v
�r

=
1

�

Ds

Dt
+ 2Dpl =

1

�
�ṡ + v

�s

�r
	 + 2Dpl, �2.22�

where overdots denote partial time derivatives. It is useful
next to eliminate ṡ�r , t� and ṗ�r , t� from these equations, and
thus to obtain a differential equation for the velocity field
v�r , t� that does not depend explicitly on those time deriva-
tives. For that purpose, we operate with −�� /Kr2��� /�r�
��r2�¯�� on Eq. �2.22�, differentiate Eq. �2.21� with respect
to r, add the results, and then use the partial time derivative
of Eq. �2.14� to obtain

�1 +
�

K
�� �2v

�r2 +
1

r

�v
�r

−
v
r2�

= −
1

K
� �v

�r

�p

�r
+ v

�2p

�r2 +
1

r2

�

�r
�r2v

�s

�r
�	

−
�

K
�4Dpl

r
+ 2

�Dpl

�r
� . �2.23�

This is a linear second order differential equation for v with
coefficients that are functions of s�r , t� and p�r , t�. This equa-
tion can be further simplified by defining ṽ�v /r and oper-
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ating with �r�v�¯�� on Eq. �2.14�. After simple manipula-
tions we obtain

�1 +
�

K
��r

�2ṽ
�r2 + 3

�ṽ
�r
� =

2s

K

�ṽ
�r

−
�

K
�4Dpl

r
+ 2

�Dpl

�r
� .

�2.24�

This equation requires two boundary conditions. To obtain
these, we note that the first boundary condition of Eq. �2.15�
implies

D�p�R,t� + s�R,t��
Dt

= 0. �2.25�

Then, using Eqs. �2.21� and �2.22� and simple manipulations,
we obtain

�ṽ�R,t�
�r

= −
2Kṽ�R� − 2�Dpl�R,t�

�K + ��R
. �2.26�

The last expression provides a relation between the boundary
values, at r=R, of ṽ and �rṽ. To provide Eq. �2.24� with
enough boundary conditions, an additional boundary condi-
tion is required. It is convenient to obtain the boundary con-
dition at infinity. To evaluate ṽ�� , t� we note that for r�R,
the stress field is purely elastic and therefore the solution of
Eq. �2.14� is p=−�� and s
r−2. Then, the large-r behavior
of Eqs. �2.21� and �2.22� predicts that

ṽ��,t� =
�̇�

2K
. �2.27�

With this boundary condition at hand we can solve numeri-
cally Eq. �2.24� by adjusting ṽ�R , t� in Eq. �2.26� such that
ṽ�� , t� satisfies Eq. �2.27�.

In spite of the fact that we have a complete solution
scheme, we supplement the derivation with an expression for
ṽ�R� that will be proved useful later. To that aim we integrate
Eq. �2.14� from R�t� to � and use the first boundary condi-
tion of Eq. �2.15� to obtain the integral relation

���t� = 2�
R�t�

� s�r,t�
r

dr . �2.28�

Taking the time derivative of Eq. �2.28�, we obtain

�
R�t�

� ṡ�r,t�
r

dr =
s�R,t�Ṙ

R
+

�̇��t�
2

. �2.29�

In order to use the last result we operate with �R
��¯��dr /r�

on Eq. �2.22� to obtain

ṽ�R� − ṽ��� =
1

�
�

R�t�

� ṡ�r,t�
r

dr +
1

�
�

R�t�

�

ṽ�r,t�
�s�r,t�

�r
dr

+ 2�
R�t�

� Dpl

r
dr . �2.30�

Substituting Eqs. �2.29� and �2.27� in Eq. �2.30� we find

Ṙ

R
= ṽ�R,t� =

2�
R

� Dpl�r,t�
r

dr +
1

�
�

R�t�

�

ṽ�r,t�
�s�r,t�

�r
dr + �̇��t�� 1

2�
+

1

2K
�

1 −
s�R,t�

�

. �2.31�

This equation plays a key role throughout the rest of this
paper. As written here it provides an integral relation be-
tween ṽ�R , t� and ṽ�r , t� which can serve as a consistency
check for our solution for Eq. �2.24�. When the incompress-
ible limit is taken, as seen below, this equation becomes an
explicit expression for the velocity of the edge. Also note
that it already incorporates the boundary conditions of Eq.
�2.15�.

D. Putting it all together

In order to put the equations in their final forms, up to
specifying Dpl, we define

W�r,t� �
�ṽ�r,t�

�r
. �2.32�

Then Eq. �2.24� becomes

�1 +
�

K
��r

�W�r,t�
�r

+ 3W�r,t��
=

2s�r,t�
K

W�r,t� −
�

K
�4Dpl�r,t�

r
+ 2

�Dpl�r,t�
�r

� , �2.33�

which is to be solved using the boundary conditions given in
Eqs. �2.26� and �2.27�. The former becomes

W�R,t� = −

2K
Ṙ

R
− 2�Dpl�R,t�

�K + ��R
. �2.34�

In terms of W�r , t�, the equation of motion for the deviatoric
stress s�r , t�, Eq. �2.22�, is
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− rW�r,t� =
1

�
�ṡ�r,t� + v�r,t�

�s�r,t�
�r

	 + 2Dpl�r,t� .

�2.35�

The pressure p�r , t� can be calculated using Eq. �2.14�. Ac-
cording to Eq. �2.32�, the velocity field v�r , t� is given by

v�r,t� =
Ṙr

R
+ r�

R

r

W�r�,t�dr�. �2.36�

The initial conditions are the linear elastic fields determined
by the load applied at t=0

p�r,t = 0� = − ���0� ,

s�r,t = 0� = ���0�
R2�0�

r2 . �2.37�

III. PLASTIC DEFORMATION

To complete this theory, we need to choose a specific
plastic rate-of-deformation function Dpl�s , . . . � and equations
of motion for the internal fields �denoted by the dots�. As
stated in the Introduction, we use the STZ theory described
in Ref. �4�. Here, Dpl�s , ,m� depends on the deviatoric
stress s, on the normalized STZ density , and on a field m
that describes the local average STZ orientation. Although
ordinary thermal fluctuations are absent at the low tempera-
tures considered here, the concept of an effective disorder
temperature remains essential �4,5�. The effective tempera-
ture Teff characterizes the state of configurational disorder in
the system. It equilibrates to the ambient temperature T at
high T �relative to the glass temperature Tg�, but may fall out
of equilibrium at low T where disorder is generated by the
atomic-scale, configurational rearrangements that accompany
mechanical deformations. We denote Teff= �ESTZ/kB��,
where ESTZ is a characteristic STZ formation energy; then
the STZ density is proportional to the Boltzmann factor
exp�−1/��. Most importantly, the time variation of the STZ
density is slaved to the dynamics of �.

The set of equations that describes plasticity in our theory
�4� is

Dpl�s̃,m,� =
�0

�0
q�s̃,m� , �3.1�

Dm

Dt
=

2

�0
q�s̃,m��1 −

ms̃


e−1/�� , �3.2�

D

Dt
=

2

�0
s̃q�s̃,m��e−1/� − � , �3.3�

D�

Dt
=

2�0

c0�0
s̃q�s̃,m���� − �� , �3.4�

where

q�s̃,m� � C�s̃�� s̃

s̃
− m� , �3.5�

and s̃=s /sy, with sy being the dynamic yield stress �4�. Here
�0 is an elementary time scale, �0 is a dimensionless constant
of order unity, c0 is a specific heat expressed in units of kB
per atom and thus is of order unity, and �� is the asymptotic
value approached by � during continuous deformation �4�.

Note that many of the features of these equations are
model independent. For example, Eqs. �3.1� and �3.5� iden-
tify m as a “back stress” that governs an exchange of dy-
namic stability at s̃=1 �i.e., when s=sy�. For s̃�1, the
stable steady-state solutions of these equations occur at m
=1 such that the system is jammed and Dpl�s̃ ,m ,�=0. For
s̃�1, on the other hand, m=1/ s̃ and there is a nonvanishing
plastic flow �see Ref. �4� for more details�.

Essentially all of the specific material-dependent proper-
ties of this theory are contained in the function C�s̃�. In the
STZ model described in Ref. �4�, C�s̃� is related to the rate
R�s̃� at which STZ’s transform between their two orienta-
tions:

C�s̃� �
�0�R�s̃� + R�− s̃��

2
, �3.6�

where R�s̃� is given by

R�s̃� =
2

�0
�

0

s̃

�s̃ − s̃��P�s̃�;��ds̃�, �3.7�

P�s̃�;�� =
��+1

�!
s̃�

� e−�s̃�. �3.8�

Here, R�s̃� is an integral over a distribution P�s̃� ;�� that re-
flects the fact that the STZ’s can be of various types with
different activation thresholds s̃�. The parameter � that char-
acterizes the distribution is the only material parameter here;
it controls the width of the distribution. The mean value of
the distribution is sy, the dynamic yield stress, that was
shown in Ref. �4� to be the value of the deviatoric stress at
which the system undergoes its dynamic exchange of stabil-
ity from jammed to flowing states. For finite values of � there
can be nonzero, sub-yield plastic deformation for s̃�1.
This behavior is well documented in the literature �8�. We
note that for s̃ very small or very large,

R�s̃� 
 s̃�+2 for s̃ → 0+, �3.9�

R�s̃� � s̃ − 1 for s̃ � 1. �3.10�

A basic assumption of the STZ theory is that the STZ’s
are sparsely distributed and only weakly interacting with
each other. For this assumption to be valid, �� must be small.
Indeed, in independent applications of the theory to actual
materials �17� or simulations of such materials �5,18�, ��

was found to be of order 0.15 or less. For such values of ��,
the density of STZ’s, �exp�−1/���, is of order 10−3, or
very much smaller. We then notice that  appears as a rate-
determining prefactor on the right-hand sides of Eqs. �3.1�
and �3.4�, which govern the bulk system-wide variables Dpl
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and �; but  does not appear in a similar way in Eqs. �3.2�
and �3.3�, which pertain to the dynamics of individual STZ’s.
It follows that the plastic strain rate and the effective tem-
perature respond much more slowly to changes in stress than
do the internal fields m and , and that the slow dynamics of
the effective temperature controls the observable mechanical
behavior of the system in most circumstances. We conclude
that, as long as the characteristic time scale of the external
loading is not significantly smaller than �0 exp�1/���, we
can safely replace Eqs. �3.2� and �3.3� by their stationary
solutions

m = m0�s̃� = � s̃/s̃ if s̃ � 1,

1/s̃ if s̃ � 1,
� �3.11�

and

 = e−1/�. �3.12�

The approximation in Eq. �3.11� tells us that m=1 for all
s̃�1, i.e., the system “immediately” becomes jammed at
small stresses. In fact, one can think of an experiment in
which at time t=0 a virgin material with m=0 throughout is
being used. Then in regions where s̃ is small, m will remain
very small for a long time, since C�s̃� is small. Notwithstand-
ing, the precise value of m in regions of small s̃ is not im-
portant for any of the results presented below. Therefore, we
use Eqs. �3.11� and �3.12� to reduce Eqs. �3.1�–�3.5� to

Dpl�s̃,m,� =
�0

�0
e−1/�q0�s̃�, q0�s̃� � C�s̃�� s̃

s̃
− m0�s̃�� ,

�3.13�

D�

Dt
=

2�0

c0�0
e−1/�s̃q0�s̃���� − �� . �3.14�

Once having made these simplifications, we also may go
immediately to the limit �→� and neglect any structure in
the function C�s̃� for stresses less than or of order of the yield
stress. Without this approximation, our equations of motion
would have predicted sub-yield deformations of magnitude
proportional to C�s̃�exp�−1/���, which we assume to be ex-
tremely small. Such deformations will not be negligible, of
course, for soft and/or highly disordered systems, or for ther-
mal systems at temperatures high enough to activate STZ
transitions. But we do not need to consider such situations
here, and therefore �→� will suffice. In this limit, C�s̃�
���s̃−1��s̃−1�, where � is the Heaviside step function,
and

q0�s̃� � ��s̃ − 1�
�s̃ − 1��s̃ sgn�s̃� − 1�

s̃
�3.15�

The initial conditions in Eqs. �2.37� must be supple-
mented with an initial condition for the effective temperature

��r,t = 0� = �0, �3.16�

where �0 describes a homogeneous state of disorder of the
material before any load is applied. Because we are using Eq.
�3.11�, there is no comparable initial condition for m.

Equations �2.14�, �2.21�, �2.22�, �2.31�–�2.36�, and
�3.13�–�3.15�, and the initial conditions in Eqs. �2.37� and
�3.16� define our problem. This system is specified by the
following set of dimensionless parameters �0, c0, ��, �0,
� /sy, K /sy and a given loading scheme ���t�. The first three
parameters characterize our plasticity theory; �0 specifies the
initial state of disorder of the material; and the last two pa-
rameters are the elastic moduli in units of the yield stress sy.
Note that two parameters �0 and sy, are scaled out as units of
time and stress, respectively. The only length scale in the
problem is the initial radius of the hole which, without loss
of generality, we set to unity.

IV. LOADING SCHEMES AND THE INCOMPRESSIBLE
LIMIT

A. Loading schemes

We now specify the loading scheme ���t�. To make con-
tact with earlier work �9�, we will look briefly in what fol-
lows at the case of increasing the load to a constant value,
that is,

���t� = ��0
t

500�0
, for 0 � t � 500�0,

�0, for t � 500�0.
� �4.1�

Our primary interest here, as in Ref. �9�, will be to see how
the region of plastic deformation forms, expands, and
reaches a stable, stationary state for loading stresses �0 less
than the threshold for unbounded growth of the hole �see the
Appendix�.

We will pay greater attention to a class of situations in
which the load takes the form of a stress pulse of finite du-
ration, because we believe that such a pulse may be relevant
to fracture dynamics. Plastic deformation of a material fail-
ing by crack propagation is localized �if it happens at all�
near the fracture surfaces. At any given material point, de-
formation occurs only during a short time interval as the
crack tip passes nearby. Specifically, a material element lying
ahead of a crack tip experiences first an increasing stress as
the crack tip opens, and then a decreasing stress as the load
vanishes on the newly formed—and deformed—fracture sur-
faces.

To simulate such a process in the circular geometry, we
study a time-dependent loading scheme in which the remote
stress ���t� increases monotonically from zero to a peak
stress �p�sy, and then returns monotonically to zero:

���t� = �4�p
t�T − t�

T2 , 0 � t � T ,

0, t � T .
� �4.2�

An example with T=8000�0 and �p=2sy is shown in Fig. 1.
Our choice of T in Eq. �4.2� is an order-of-magnitude

estimate emerging from the analysis in Ref. �2�. For cracks
whose speeds are governed by plastic dissipation, and when
surface tension is negligible, that analysis implied that the
crack tip blunts in such a way that the stress on its surface is
always of order sy, and the tip radius is linearly proportional

BOUCHBINDER et al. PHYSICAL REVIEW E 76, 026115 �2007�

026115-6



to the crack speed. Thus the time T that any material element
spends in the fracture zone is roughly constant, of order the
plastic relaxation time �0 exp�1/���. If ���0.13, then T
�2200�0. This estimate is consistent with the discussion in
Ref. �3�, where the plastic zone size was dynamically ad-
justed so that the time needed for the crack to pass this zone
was of the order of the plastic relaxation time. Note that T is
a very short time, of order picoseconds if �0 is an atomic
time of order femtoseconds. That value of T is roughly an
atomic spacing divided by a sound speed. These estimates
lead us to believe that, although STZ plasticity is slow on
atomic time scales, it is easily fast enough to be relevant to
fracture. Clearly, this estimate of relevant time scales will
have to be reexamined when the theory is applied to realistic
models of fracture where surface tension is important.

B. The incompressible limit

It is convenient for both analytic and numerical simplicity
to work in the limit of elastic �as well as plastic� incompress-
ibility. Many materials are highly incompressible, as evi-
denced by large bulk moduli K or, equivalently, by the two-
dimensional Poisson ratios 
* being close to unity. Moreover,
we have studied numerically the set of equations �2.14�,
�2.21�, �2.22�, �2.32�–�2.37� and �3.1�–�3.8� for various load-
ing scenarios using 0.7�
*�1, and have found results that
vary smoothly with 
* without any noticeable singular be-
havior in the limit 
*→1. Therefore, for analytic purposes,
we can focus on the limit 
*→1 �K→��.

Note first that, in the incompressible limit, Eq. �2.21� re-
duces to

v
r

+
�v
�r

= 0, �4.3�

which is in accord with the zero total compressibility trDtot

=0. Equation �4.3� can immediately be integrated to yield

v�r,t� =
Ṙ�t�R�t�

r
, �4.4�

where the boundary condition �2.19� has been used. This
explicit expression for the velocity field provides a major
simplification because we no longer need to solve Eq.
�2.33�–�2.36� numerically.

Having the velocity field at hand, we can rewrite all the
equations of the theory in a more explicit way. The sum of
Eqs. �2.21� and �2.22� becomes

ṘR

r2 =
1

2�

�s

�t
+

1

2�

ṘR

r

�s

�r
+ Dpl. �4.5�

Equations �3.13�–�3.15� �with s̃=s /sy as before� are

Dpl =
�0

�0
e−1/�q0�s̃�, q0�s̃� = ��s̃ − 1�

�s̃ − 1��s̃ sgn�s̃� − 1�
s̃

;

�4.6�

��

�t
+

ṘR

r

��

�r
=

2

c0

�0

�0
e−1/�s̃q0�s̃���� − �� . �4.7�

The derived relation �2.31� becomes

Ṙ

R
=

2�
R

� Dpl

r
dr +

�̇��t�
2�

1 −
2R2

�
�

R

� s�r,t�
r3 dr

. �4.8�

Note that the pressure p�r , t� does not appear in the final
equations for the incompressible limit, but is computable as
before from the deviatoric stress field s�r , t� using Eq. �2.14�.

V. RESULTS

We are now ready to study numerically Eqs. �4.5�–�4.8� in
detail. We consider both the constant load and the time-
dependent loading scenarios, Eqs. �4.1� and �4.2�, respec-
tively.

A. Increase toward a constant load

The results of numerical simulations for the case of an
increase toward a constant load �0 /sy =2 are shown in Fig. 2.
In this loading scheme, we know that there is a maximum
value of ��, say �th, above which the hole expands indefi-
nitely. �See Ref. �9� and earlier references cited there.� For
completeness, in the Appendix, we show how to compute �th

in the current version of STZ theory. The result, for the pa-
rameters used here, is �th�5sy, which is substantially larger
than the value of �0 chosen for this illustration.

Note that the radius of the hole, R�t�, first increases elas-
tically to R0=exp��0 /2���1.02 �not shown in Fig. 2�, then
grows �by less than one percent in this example�, and tends
toward a constant value at large times. The stress s is pro-
portional to the elastic solution 1/r2 for r outside the plasti-
cally deformed region; but, in accordance with conventional
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0.5
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t/τ
0

σ∞
/s

y

FIG. 1. �Color online� A time-dependent nonmonotonic loading
scheme corresponding to Eq. �4.2� with T=8000�0 and �p=2sy.
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plasticity theories, s decreases in time toward the yield stress
sy inside that region. The plastic region eventually extends
out to a radius R1. The usual quasistatic estimate of R1 �8,9�
is made by assuming s�r�=sy for R�r�R1, and s�r�
=sy�R1 /r�2 for r�R1. Inserting this s�r� into the integral on
the right-hand side of Eq. �2.28� and setting ��=�0=2sy on
the left-hand side, we find R1 /R=exp��1/2���0 /sy −1��
=1.65. Thus, even in cases where the plastic deformation is
small in comparison to the elastic displacement, the plasti-
cally deformed region may be quite extensive. Finally, note
that the STZ density =e−1/� becomes substantially larger
than its initial value throughout this plastic region.

B. Time-dependent nonmonotonic loading

In Figs. 3 and 4 we present numerical results for the case
of time-dependent nonmonotonic loading as shown in Eq.
�4.2� and Fig. 1. Here we have chosen T=8000�0 and two
different values of the peak stress �p /sy =2.0 and 4.0. The
first of these is small enough that the radius of the hole
changes at its maximum by only about two percent, consis-
tent with the effect of constant loading at the same stress
shown in Fig. 2. Only a small part of that transient change in
the radius is irreversible plastic deformation; most of what
we are seeing is elastic expansion and contraction of the
system as a whole. However, this relatively moderate sce-
nario may be the more realistic of the two sets of time-
dependent simulations for describing failure in strong struc-
tural materials where, in keeping with conventional analyses,
we do not expect stresses to be much larger than the yield
stress.

The bigger peak stress causes substantially more plastic
deformation, as seen in the comparatively large, irreversible

change in the hole radius that remains after the system has
been fully unloaded. This peak stress may be unrealistically
large; but showing it here illustrates some features of the
plastic response more clearly than the small-stress case. Note
that the large applied stress induces a complex unloading
sequence in which the stress near the hole becomes so large
and negative that it drives strain recovery via reverse plastic
deformation.

The dynamic response of this system, in both examples, is
characterized by the emergence of a residual stress in the
plastic zone near the hole edge. Note that s exhibits the sharp
transition between plastic and elastic regions that we expect
as a result of the special form of the constitutive law chosen
in Eq. �3.15�, and that the STZ density  becomes large in
the plastic region. The qualitative picture that we take from
these results is that of a plastically deformed region near the
hole edge �or near any defect boundary in the general case�,
outside of which s retains its elastic solution �here propor-
tional to 1/r2�, but within which s decreases and may change
sign, consistent with an irreversible outward displacement of
the material near the hole.

VI. BOUNDARY-LAYER APPROXIMATION

A principal objective of this investigation has been to
study the dynamics of time-dependent plasticity in the neigh-
borhood of a symmetrically loaded circular hole and, from
this study, to learn how to construct realistic approximations
for less symmetric situations. We have seen in the preceding
section that, under certain circumstances, plastic deformation
remains localized in a relatively narrow zone near the hole.
This observation leads us to believe that some sort of
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FIG. 2. �Color online� The r
dependence of the dynamical vari-
ables at different times in the con-
stant load case. The radius of the
circle is shown in the upper left
panel without the initial elastic ex-
pansion. At longer times the ra-
dius saturates. Note the relative
small increase in radius. The
stress is shown in the upper right
panel, and the fields Dpl�r , t� and
=e−1/� in the two lower panels,
respectively. The parameters cho-
sen are �0=1, c0=1, �0=0.13, �0

=0.1, �=50sy, and �0=2sy. The
solid line corresponds to t
=2000�0, the dashed line to t
=4000�0, the dotted line to t
=6000�0, and the dotted-dashed
line to t=8000�0.
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boundary-layer approximation might have at least limited va-
lidity in interesting applications such as asymmetric void
growth or fracture. In what follows, we explore one class of
such approximations.

The numerical examples illustrated in Figs. 3 and 4 have
several common features that need to be captured in any
useful approximation. Most importantly, the dynamic behav-

ior is qualitatively different in what we call the “active plas-
tic phase”—roughly speaking, the time interval in which the
hole is growing by plastic deformation—than it is in the
“elastic unloading phase” where plastic deformation ceases.
During the active plastic phase, as soon as �� exceeds sy,
plastic deformation occurs in an active plastic zone R�t��r
�R1�t�, where R1�t� is the radius at which
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FIG. 3. �Color online� The
time-dependent nonmonotonic
load case. All the material param-
eters are the same as those for Fig.
2, while the load is given by Eq.
�4.2� with T=8000�0 and �p=2sy.
The solid line corresponds to t
=2000�0, the dashed line to t
=4000�0, the dotted line to t
=6000�0, and the dotted-dashed
line to t=8000�0.
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FIG. 4. �Color online� Same as
the preceding figure but with
�p=4sy.
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s�R1�t�,t� = sy . �6.1�

During this phase, no irreversible deformation has occurred
for r�R1�t�, and thus the stress field in this outer region is
simply

s�r,t� = sy

R1
2�t�
r2 , p�r,t� = − ���t�, for r � R1. �6.2�

This behavior changes as elastic unloading begins. As
seen in Figs. 3 and 4, R�t� reaches its peak considerably later
than when the load ���t� peaks at tp=4000�0. Between tp and
the time at which R�t� reaches its maximum, and for some
time after that, the hole continues to grow plastically while
the system as a whole contracts elastically. During that inter-
val, the stress at the boundary of the hole, s�R , t�, drops
rapidly toward the yield stress sy; while s�R1 , t�, by the defi-
nition of R1, remains equal to sy. The transition between the
active plastic and the elastic unloading phases that is impor-
tant for our purposes occurs when s�R , t� passes downward
through sy at a time that we call t1.

To see what happens near t1, we show in Fig. 5, for the
case �p=2sy, a sequence of graphs of s�r , t� and Dpl�r , t� as
functions of r /R�t� for four equally spaced times starting at
tp=4000�0, and ending at t=5500�0 �just later than t1
�5200�0�. Note that at t=5500�0 Dpl has already vanished.
The crucial observation is that Dpl�r , t� extends across the
whole active plastic zone, R�t��r�R1�t�, until t= t1, at
which time, at least to a rough first approximation, it van-
ishes almost uniformly everywhere.

The elastic unloading phase, starting at about time t1,
evolves as an entirely elastic response to the decreasing driv-
ing force, conditioned by the material displacements that oc-
curred during the plastic loading phase. During this part of
the unloading process, there is no longer an active plastic
zone, but there remains a plastically deformed region—a
“process zone”—within which irreversible material displace-
ments give rise to residual stresses. The process zone extends

from R�t� out to the most distant material point at which
plastic deformation occurred, that is, out to R1�t1� advected
back toward R�t� by elastic relaxation.

Elastic unloading persists at least until t=T when the re-
mote load ���t� vanishes. As seen in Fig. 4, the stress near
the hole may become so large and negative that it drives
plastic strain recovery. This behavior occurs only for large
peak stresses, and does not occur when the remote stresses
are smaller than about 2.5sy in the present model. We will
not include plastic strain recovery in our boundary-layer
analysis, and simply will point out where it is missing.

Our strategy for developing a boundary-layer approxima-
tion is to write equations of motion for quantities defined
only near the boundary, i.e., within the process zone, and
then to deduce the boundary motion from these local quan-
tities instead of solving for fields everywhere in the system.
In our case, the relevant boundary is just the hole radius R�t�.
The rate of change of any quantity A�R , t�, defined on r
=R�t�, is

dA�R,t�
dt

=
�A�R,t�

�t
+ Ṙ

�A�R,t�
�r

. �6.3�

Since Ṙ=v�R , t�, the time derivative in Eq. �6.3� is just the
material time derivative defined in Eq. �2.11�. The equations
for s�R , t�, Dpl�R , t� and ��R , t�, i.e., Eqs. �4.5�–�4.7� evalu-
ated at r=R�t�, are

Ṙ

R
=

1

2�

ds�R,t�
dt

+ Dpl�R,t� , �6.4�

Dpl�R,t� =
�0

�0
e−1/��R,t�q0�R,t�, q0�R,t� � q0�s̃�R,t�� ,

�6.5�
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FIG. 5. �Color online� The
profiles of s�r , t� and Dpl�r , t� for
the same external loading as in
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=5000�0, and the dotted-dashed
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d��R,t�
dt

=
2�0

c0�0
e−1/��R,t�s�R,t�q0�R,t���� − ��R,t�� .

�6.6�

We need one more relation to close this set of equations.
The obvious candidate is Eq. �4.8�, which already involves
only quantities defined in the process zone. This equation
demands special attention, however, because it has been de-
rived using exact mathematical relationships that are unique
to circular symmetry, and because it explicitly involves the
remote driving force ���t� which entered the analysis via
those exact relationships. We need some such relation to de-
termine the coupling between the remote driving force and
the boundary. If the boundary-layer strategy is to be success-
ful, we ultimately will have to interpret ���t� as a quantity
emerging from solutions of a more general elasticity prob-
lem. For present purposes, however, we accept Eq. �4.8� as
written, except that we simplify it by neglecting the integral
term in the denominator since s�R , t� /� is at most of the
order of sy /� which is itself much smaller than unity. Thus
we write

Ṙ

R
� 2�

R

R1 Dpl�r,t�
r

dr +
�̇��t�
2�

. �6.7�

Note that the original integral in Eq. �4.8� involves the plas-
tic rate of deformation Dpl�r , t� which vanishes for r�R1.
Therefore, in Eq. �6.7�, we have explicitly inserted R1 as the
upper limit of integration.

Next we use Eq. �6.7� to obtain an approximate expres-

sion for Ṙ /R, and then use that relation to eliminate Ṙ /R on
the left-hand side of Eq. �6.4� in favor of s�R , t�. To do this,
we need an approximation for the integral over Dpl�r , t� that
appears in Eq. �6.7�. The numerical results shown in Fig. 5
suggest that, throughout the active plastic phase, Dpl�r , t�
varies almost linearly, from its value Dpl�R , t� at r=R�t� to
zero �by definition� at r=R1�t�. Thus we write

�
R

R1 Dpl�r,t�
r

dr �
1

2
Dpl�R,t��R1�t�

R�t�
− 1� . �6.8�

To estimate R1�t� we invoke Eq. �2.28�, which is another
exact relationship between the circularly symmetric stress
field s�r , t� and the remote driving force ���t�, and is subject
to the same concerns that we expressed above about our use
of Eq. �4.8�. So long as we remain in the active plastic phase,
and can assume that R1�t� remains the outer boundary of the
material region in which Dpl�r , t� is nonzero, we can use Eq.
�6.2� for the stress outside r=R1�t�, and write Eq. �2.28� in
the form

���t� = 2�
R�t�

R1�t� s�r,t�
r

dr + sy . �6.9�

Then, in the spirit of our approximation for Dpl�r , t� in the
active plastic region, we make a linear approximation for
s�r , t�, using the fact that this stress is equal to sy at R1, and
allowing s�R , t��s�R�t� , t� to be an as yet undetermined

function of time. Specifically, for R�t��r�R1�t� and for
times t� t1 such that s�R , t��sy, we have

s�r,t� � sy +
R1�t� − r

R1�t� − R�t�
�s�R,t� − sy�, s�R,t� � sy .

�6.10�

Inserting Eq. �6.10� into Eq. �6.9�, and linearizing in
�R1−R� /R, we find, again for t� t1,

�R1�t�
R�t�

− 1� �
���t� − sy

s�R,t� + sy
, ���t�,s�R,t� � sy .

�6.11�

Note that when ���t� is increasing and is smaller than sy,
there is no active plastic zone at all, i.e., R1�t�=R�t�. Using
Eq. �6.8� and �6.11�, Eq. �6.7� becomes

Ṙ

R
�

���t� − sy

s�R,t� + sy
Dpl�R,t� +

�̇��t�
2�

, ���t�,s�R,t� � sy .

�6.12�

We emphasize that, in this approximation, the end of the
active plastic phase occurs at the time t1 when s�R , t1�=sy.
By definition, Dpl�R , t1�=0, and therefore Dpl�r , t1��0
throughout R�t1��r�R1�t1�. Apart from the possibility of
reverse plasticity, Dpl�r , t� vanishes at all later times, t� t1. It
follows that Eq. �6.12�, with a properly interpreted Dpl�r , t�,
is a valid approximation at all times, during loading and
unloading, because—apart from the possibility of reverse
plasticity—Dpl�R , t� vanishes whenever s�R , t��sy.

Our boundary-layer calculation is straightforward from
here on. We insert Eq. �6.12� on the left-hand side of Eq.
�6.4�, thus obtaining a nonlinear, first-order differential equa-
tion for s�R , t�, which can be solved using Eqs. �6.5� and
�6.6�. Our results are shown in Figs. 6–8, where we compare
the predictions of the boundary layer theory for R�t�, s�R , t�,
Dpl�R , t�, and �R , t� with the exact solutions for �p /sy =2, 3,
and 4. The comparison is excellent for �p /sy =2, even though
R1�t� /R�t�−1 is about 0.5, which is not that small. The re-
sults are acceptable also for �p /sy =3, but deviations grow
rapidly for higher values of �p /sy, as expected. Note that in
Figs. 7 and 8 the effect of plastic strain recovery is noticeable
for the exact solution but has not been included in the
boundary-layer approximation. Nevertheless, the values
s�R�t���−sy and Dpl�R�t���0 are well approximated in this
period of plastic strain recovery.

We can push the comparison between the boundary-layer
approximation and the exact results further by computing the
residual stresses in the process zone. We do this as follows.
We note first that Eq. �6.4� can be used for any radius R��t�,
not just the radius of the hole R�t�. At times later than t1, the
quantity Dpl�R� , t� appearing here vanishes for any R�. We

also can compute the quantity Ṙ� /R� on the left-hand side of

Eq. �6.4� using our knowledge of Ṙ�t� /R�t� and the fact that
the material in the region between R and R� is incompress-

ible �R�Ṙ�=RṘ�. Finally, we know that s�R� , t1��sy for all
R� between R and R1; so we can use Eq. �6.4� to compute the
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advected value of s�R��t� , t� at any later time t, and then plot
this value as a function of the advected position r=R��t�. The
functions s�r , t� computed in this way, for �p /sy =2, are
shown in Fig. 9. Outside the process zone, we have used the
elastic solution with s�1/r2. The agreement between the full
solution and the boundary layer predictions lends further
support to the philosophy presented in this section.

VII. DISCUSSION AND SUMMARY

We have presented a derivation of the equations of motion
for a moving free boundary, in this case a circle, using the
athermal STZ theory of amorphous plasticity. To afford some
analytic steps we have made several simplifying approxima-
tions. These are �i� inertia in the equations of motion was
neglected. This approximation will be removed in a
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FIG. 6. �Color online� A com-
parison between the exact solution
�solid line� and the prediction of
the boundary layer theory �open
circles� for �p=2sy.
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�solid line� and the prediction of
the boundary layer theory �open
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follow-up paper. �ii� The incompressible limit was shown to
be regular and useful for analytic progress. �iii� Small elastic
deformations were assumed, allowing us to employ the ad-
ditive decomposition of the total rate of deformation tensor,
and linear elasticity. �iv� In the STZ theory we used the sepa-
ration of time scales between the dynamics of m and � to

slave the fast to the slow variables using the fixed points of
m. Finally, we simplified the function C�s̃� by neglecting the
sub-yield deformations. The resulting equations were solved
numerically and yielded some interesting results. We looked
especially at loading scenarios in which the material was
subjected, at large distances from the hole, to stress pulses
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FIG. 8. �Color online� A com-
parison between the exact solution
�solid line� and the prediction of
the boundary layer theory �open
circles� for �p=4sy.
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whose durations were comparable to the plastic relaxation
time for the STZ mechanism. For the range of material pa-
rameters chosen here, which we believe to be characteristic
of realistic amorphous solids, the irreversible displacement
of the boundary of the hole was small. However, the width of
the region in which plastic deformation occurred, as evi-
denced by increased internal disorder and residual stresses,
became comparable to the radius of the circle for stress
pulses whose peak strengths �p were twice the yield stress
sy. We also found that strong enough stress pulses �p
�2.5sy induce reverse, plastic strain recovery near the edge
of the hole.

The theory as written is rather cumbersome even for the
circular symmetry considered here. It is therefore with some
relief that we have found that a boundary layer approxima-
tion, using only quantities defined on the circumference of
the circle and their coupling to the remote stress, succeeds in
capturing the plastic effects quite well. Specifically, despite
several apparently serious oversimplifications, this approxi-
mation accurately reproduces the irreversible displacement
of the radius of the circle and the residual stress found in its
neighborhood. We propose that such boundary layer theories
might find useful applications in less symmetric situations,
not the least interesting being fracture dynamics.

A next issue on our agenda is the dynamic stability of our
circular solutions. It will be interesting to learn whether our
equations of motion predict that the growing circular hole
becomes unstable against symmetry-breaking perturbations,
for example, whether it forms fingers that might evolve into
cracks, or whether a perturbed circular solution can survive.
The transition between these two possibilities, if found,
might shed light on the brittle-to-ductile transition in visco-
plastic materials. Along the same lines, it will be important
to learn how strongly the circular behavior itself, and the
stability of circular symmetry, depend on specific details of
our model such as elastic compressibility, initial states of
disorder, or the absence of thermal effects.
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APPENDIX: UNBOUNDED GROWTH

One characteristic stress that emerges in the circular-hole
problem is the threshold �th above which the hole grows
without bound under conditions of constant loading. In this
section we explain how this threshold is estimated in the
athermal STZ theory.

Because the only length scale in this problem is the radius
of the hole R�t�, we expect that all spatially varying
�r-dependent� quantities occurring in a uniformly �exponen-
tially� expanding solution of our equations of motion will be
self-similar functions only of the ratio r /R�t�. For conve-
nience, we choose the variable �=R�t� /r. These self-similar

solutions are characterized by Ṙ /R=�, where ��0 depends
on the loading and vanishes at the threshold �th.

In fact, these solutions invalidate the assumptions of our
theory for large times since the exponential growth of the

hole implied by Ṙ /R=� will inevitably lead to very large
velocities at large t, in contradiction with our omission of the
inertial term in Eq. �2.7�. When this happens in the full,
inertial theory, the self-similar solutions break down with the
appearance of perturbations propagating at a characteristic
wave velocity. Nevertheless, as we are interested in obtaining
an estimate for �th, the self-similar approximate solutions for
finite times are still useful. .

For present purposes, we solve our equations of motion
for a self-similar deviatoric stress s̃�� ;�� in the limit �0�
→0. Once s̃�� ;�� is known, we can use Eq. �2.28� to obtain
the following expression for �th:

�th

sy
� 2�

0

1 s̃��;��
�

d� for �0� → 0. �A1�

Here we assume that the exponential growth at a small �
allows the system to approach the self-similar solution
s̃�� ;�� in times when the velocities are still smaller than the
typical wave velocity. s̃�� ;�� can be computed using Eqs.
�4.5�–�4.7�. First we note that the material time derivative of
Eq. �2.11� translates to

D
Dt

= ���1 − �2�
�

��
. �A2�

Then Eqs. �4.5�–�4.7� read

�0���1 − �2�
�s̃

��
= 2��0��2 − 2��0e−1/�q�s̃,m;�� ,

�0���1 − �2�
�m

��
= 2q�s̃,m;���1 − s̃m� ,

�0���1 − �2�
��

��
=

2�0

c0�0
e−1/�s̃q�s̃,m;����� − �� . �A3�

Also recall that Ṙ /R=�. The initial conditions are

s̃�0� = 0, m�0� = 0, ��0� = �0. �A4�

We have integrated these equations numerically in the limit
�0�→0 with �0=1, c0=1, ��=0.13, �0=0.1, � /sy =50 and
for various values of ��10. Then we have used Eq. �A1� to
obtain �th�5sy, and have checked that this result is only
weakly dependent on �.
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